From dcf61ff06d1738f66f89a54c25469df346214d75 Mon Sep 17 00:00:00 2001 From: Liu Xiang Date: Sat, 30 Nov 2019 17:54:30 -0800 Subject: mm/vmalloc.c: remove unnecessary highmem_mask from parameter of gfpflags_allow_blocking() gfpflags_allow_blocking() does not care about __GFP_HIGHMEM, so highmem_mask can be removed. Link: http://lkml.kernel.org/r/1568812319-3467-1-git-send-email-liuxiang_1999@126.com Signed-off-by: Liu Xiang Reviewed-by: Andrew Morton Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/vmalloc.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm/vmalloc.c') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 4a7d7459c4f9..fad6d1d732b2 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -2440,7 +2440,7 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, goto fail; } area->pages[i] = page; - if (gfpflags_allow_blocking(gfp_mask|highmem_mask)) + if (gfpflags_allow_blocking(gfp_mask)) cond_resched(); } atomic_long_add(area->nr_pages, &nr_vmalloc_pages); -- cgit v1.2.3 From 81f1ba586e393ad43350bded96d1ec3c48674b00 Mon Sep 17 00:00:00 2001 From: "Uladzislau Rezki (Sony)" Date: Sat, 30 Nov 2019 17:54:33 -0800 Subject: mm/vmalloc: remove preempt_disable/enable when doing preloading Some background. The preemption was disabled before to guarantee that a preloaded object is available for a CPU, it was stored for. That was achieved by combining the disabling the preemption and taking the spin lock while the ne_fit_preload_node is checked. The aim was to not allocate in atomic context when spinlock is taken later, for regular vmap allocations. But that approach conflicts with CONFIG_PREEMPT_RT philosophy. It means that calling spin_lock() with disabled preemption is forbidden in the CONFIG_PREEMPT_RT kernel. Therefore, get rid of preempt_disable() and preempt_enable() when the preload is done for splitting purpose. As a result we do not guarantee now that a CPU is preloaded, instead we minimize the case when it is not, with this change, by populating the per cpu preload pointer under the vmap_area_lock. This implies that at least each caller that has done the preallocation will not fallback to an atomic allocation later. It is possible that the preallocation would be pointless or that no preallocation is done because of the race but the data shows that this is really rare. For example i run the special test case that follows the preload pattern and path. 20 "unbind" threads run it and each does 1000000 allocations. Only 3.5 times among 1000000 a CPU was not preloaded. So it can happen but the number is negligible. [mhocko@suse.com: changelog additions] Link: http://lkml.kernel.org/r/20191016095438.12391-1-urezki@gmail.com Fixes: 82dd23e84be3 ("mm/vmalloc.c: preload a CPU with one object for split purpose") Signed-off-by: Uladzislau Rezki (Sony) Reviewed-by: Steven Rostedt (VMware) Acked-by: Sebastian Andrzej Siewior Acked-by: Daniel Wagner Acked-by: Michal Hocko Cc: Hillf Danton Cc: Matthew Wilcox Cc: Oleksiy Avramchenko Cc: Peter Zijlstra Cc: Thomas Gleixner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/vmalloc.c | 37 ++++++++++++++++++++----------------- 1 file changed, 20 insertions(+), 17 deletions(-) (limited to 'mm/vmalloc.c') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index fad6d1d732b2..90517b4b21ef 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1077,31 +1077,34 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, retry: /* - * Preload this CPU with one extra vmap_area object to ensure - * that we have it available when fit type of free area is - * NE_FIT_TYPE. + * Preload this CPU with one extra vmap_area object. It is used + * when fit type of free area is NE_FIT_TYPE. Please note, it + * does not guarantee that an allocation occurs on a CPU that + * is preloaded, instead we minimize the case when it is not. + * It can happen because of cpu migration, because there is a + * race until the below spinlock is taken. * * The preload is done in non-atomic context, thus it allows us * to use more permissive allocation masks to be more stable under - * low memory condition and high memory pressure. + * low memory condition and high memory pressure. In rare case, + * if not preloaded, GFP_NOWAIT is used. * - * Even if it fails we do not really care about that. Just proceed - * as it is. "overflow" path will refill the cache we allocate from. + * Set "pva" to NULL here, because of "retry" path. */ - preempt_disable(); - if (!__this_cpu_read(ne_fit_preload_node)) { - preempt_enable(); - pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); - preempt_disable(); + pva = NULL; - if (__this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) { - if (pva) - kmem_cache_free(vmap_area_cachep, pva); - } - } + if (!this_cpu_read(ne_fit_preload_node)) + /* + * Even if it fails we do not really care about that. + * Just proceed as it is. If needed "overflow" path + * will refill the cache we allocate from. + */ + pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); spin_lock(&vmap_area_lock); - preempt_enable(); + + if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) + kmem_cache_free(vmap_area_cachep, pva); /* * If an allocation fails, the "vend" address is -- cgit v1.2.3 From f07116d77b5b9a4fecdcb470fc6ea08378b98ff7 Mon Sep 17 00:00:00 2001 From: "Uladzislau Rezki (Sony)" Date: Sat, 30 Nov 2019 17:54:37 -0800 Subject: mm/vmalloc: respect passed gfp_mask when doing preloading Allocation functions should comply with the given gfp_mask as much as possible. The preallocation code in alloc_vmap_area doesn't follow that pattern and it is using a hardcoded GFP_KERNEL. Although this doesn't really make much difference because vmalloc is not GFP_NOWAIT compliant in general (e.g. page table allocations are GFP_KERNEL) there is no reason to spread that bad habit and it is good to fix the antipattern. [mhocko@suse.com: rewrite changelog] Link: http://lkml.kernel.org/r/20191016095438.12391-2-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) Acked-by: Michal Hocko Cc: Daniel Wagner Cc: Hillf Danton Cc: Matthew Wilcox Cc: Oleksiy Avramchenko Cc: Peter Zijlstra Cc: Sebastian Andrzej Siewior Cc: Steven Rostedt Cc: Thomas Gleixner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/vmalloc.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'mm/vmalloc.c') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 90517b4b21ef..b3bb50d07e27 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1063,9 +1063,9 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, return ERR_PTR(-EBUSY); might_sleep(); + gfp_mask = gfp_mask & GFP_RECLAIM_MASK; - va = kmem_cache_alloc_node(vmap_area_cachep, - gfp_mask & GFP_RECLAIM_MASK, node); + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); @@ -1073,7 +1073,7 @@ static struct vmap_area *alloc_vmap_area(unsigned long size, * Only scan the relevant parts containing pointers to other objects * to avoid false negatives. */ - kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); + kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); retry: /* @@ -1099,7 +1099,7 @@ retry: * Just proceed as it is. If needed "overflow" path * will refill the cache we allocate from. */ - pva = kmem_cache_alloc_node(vmap_area_cachep, GFP_KERNEL, node); + pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); spin_lock(&vmap_area_lock); -- cgit v1.2.3 From 060650a2a0598d61bac6ce64578b176cb0e18b06 Mon Sep 17 00:00:00 2001 From: "Uladzislau Rezki (Sony)" Date: Sat, 30 Nov 2019 17:54:40 -0800 Subject: mm/vmalloc: add more comments to the adjust_va_to_fit_type() When fit type is NE_FIT_TYPE there is a need in one extra object. Usually the "ne_fit_preload_node" per-CPU variable has it and there is no need in GFP_NOWAIT allocation, but there are exceptions. This commit just adds more explanations, as a result giving answers on questions like when it can occur, how often, under which conditions and what happens if GFP_NOWAIT gets failed. Link: http://lkml.kernel.org/r/20191016095438.12391-3-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) Acked-by: Michal Hocko Cc: Daniel Wagner Cc: Sebastian Andrzej Siewior Cc: Thomas Gleixner Cc: Peter Zijlstra Cc: Uladzislau Rezki Cc: Hillf Danton Cc: Michal Hocko Cc: Matthew Wilcox Cc: Oleksiy Avramchenko Cc: Steven Rostedt Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/vmalloc.c | 13 +++++++++++++ 1 file changed, 13 insertions(+) (limited to 'mm/vmalloc.c') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index b3bb50d07e27..9bb6610f499b 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -968,6 +968,19 @@ adjust_va_to_fit_type(struct vmap_area *va, * There are a few exceptions though, as an example it is * a first allocation (early boot up) when we have "one" * big free space that has to be split. + * + * Also we can hit this path in case of regular "vmap" + * allocations, if "this" current CPU was not preloaded. + * See the comment in alloc_vmap_area() why. If so, then + * GFP_NOWAIT is used instead to get an extra object for + * split purpose. That is rare and most time does not + * occur. + * + * What happens if an allocation gets failed. Basically, + * an "overflow" path is triggered to purge lazily freed + * areas to free some memory, then, the "retry" path is + * triggered to repeat one more time. See more details + * in alloc_vmap_area() function. */ lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); if (!lva) -- cgit v1.2.3 From e36176be1c3920a487681e37158849b9f50189c4 Mon Sep 17 00:00:00 2001 From: "Uladzislau Rezki (Sony)" Date: Sat, 30 Nov 2019 17:54:47 -0800 Subject: mm/vmalloc: rework vmap_area_lock With the new allocation approach introduced in the 5.2 kernel, it becomes possible to get rid of one global spinlock. By doing that we can further improve the KVA from the performance point of view. Basically we can have two independent locks, one for allocation part and another one for deallocation, because of two different entities: "free data structures" and "busy data structures". As a result, allocation/deallocation operations can still interfere between each other in case of running simultaneously on different CPUs, it means there is still dependency, but with two locks it becomes lower. Summarizing: - it reduces the high lock contention - it allows to perform operations on "free" and "busy" trees in parallel on different CPUs. Please note it does not solve scalability issue. Test results: In order to evaluate this patch, we can run "vmalloc test driver" to see how many CPU cycles it takes to complete all test cases running sequentially. All online CPUs run it so it will cause a high lock contention. HiKey 960, ARM64, 8xCPUs, big.LITTLE: sudo ./test_vmalloc.sh sequential_test_order=1 [ 390.950557] All test took CPU0=457126382 cycles [ 391.046690] All test took CPU1=454763452 cycles [ 391.128586] All test took CPU2=454539334 cycles [ 391.222669] All test took CPU3=455649517 cycles [ 391.313946] All test took CPU4=388272196 cycles [ 391.410425] All test took CPU5=384036264 cycles [ 391.492219] All test took CPU6=387432964 cycles [ 391.578433] All test took CPU7=387201996 cycles [ 304.721224] All test took CPU0=391521310 cycles [ 304.821219] All test took CPU1=393533002 cycles [ 304.917120] All test took CPU2=392243032 cycles [ 305.008986] All test took CPU3=392353853 cycles [ 305.108944] All test took CPU4=297630721 cycles [ 305.196406] All test took CPU5=297548736 cycles [ 305.288602] All test took CPU6=297092392 cycles [ 305.381088] All test took CPU7=297293597 cycles ~14%-23% patched variant is better. Link: http://lkml.kernel.org/r/20191022155800.20468-1-urezki@gmail.com Signed-off-by: Uladzislau Rezki (Sony) Acked-by: Andrew Morton Cc: Hillf Danton Cc: Michal Hocko Cc: Matthew Wilcox Cc: Oleksiy Avramchenko Cc: Steven Rostedt Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- mm/vmalloc.c | 80 +++++++++++++++++++++++++++++++++++++----------------------- 1 file changed, 50 insertions(+), 30 deletions(-) (limited to 'mm/vmalloc.c') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 9bb6610f499b..33e245ebe70c 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -331,6 +331,7 @@ EXPORT_SYMBOL(vmalloc_to_pfn); static DEFINE_SPINLOCK(vmap_area_lock); +static DEFINE_SPINLOCK(free_vmap_area_lock); /* Export for kexec only */ LIST_HEAD(vmap_area_list); static LLIST_HEAD(vmap_purge_list); @@ -1114,7 +1115,7 @@ retry: */ pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); - spin_lock(&vmap_area_lock); + spin_lock(&free_vmap_area_lock); if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva)) kmem_cache_free(vmap_area_cachep, pva); @@ -1124,14 +1125,17 @@ retry: * returned. Therefore trigger the overflow path. */ addr = __alloc_vmap_area(size, align, vstart, vend); + spin_unlock(&free_vmap_area_lock); + if (unlikely(addr == vend)) goto overflow; va->va_start = addr; va->va_end = addr + size; va->vm = NULL; - insert_vmap_area(va, &vmap_area_root, &vmap_area_list); + spin_lock(&vmap_area_lock); + insert_vmap_area(va, &vmap_area_root, &vmap_area_list); spin_unlock(&vmap_area_lock); BUG_ON(!IS_ALIGNED(va->va_start, align)); @@ -1141,7 +1145,6 @@ retry: return va; overflow: - spin_unlock(&vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = 1; @@ -1177,28 +1180,25 @@ int unregister_vmap_purge_notifier(struct notifier_block *nb) } EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); -static void __free_vmap_area(struct vmap_area *va) +/* + * Free a region of KVA allocated by alloc_vmap_area + */ +static void free_vmap_area(struct vmap_area *va) { /* * Remove from the busy tree/list. */ + spin_lock(&vmap_area_lock); unlink_va(va, &vmap_area_root); + spin_unlock(&vmap_area_lock); /* - * Merge VA with its neighbors, otherwise just add it. + * Insert/Merge it back to the free tree/list. */ + spin_lock(&free_vmap_area_lock); merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); -} - -/* - * Free a region of KVA allocated by alloc_vmap_area - */ -static void free_vmap_area(struct vmap_area *va) -{ - spin_lock(&vmap_area_lock); - __free_vmap_area(va); - spin_unlock(&vmap_area_lock); + spin_unlock(&free_vmap_area_lock); } /* @@ -1291,7 +1291,7 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) flush_tlb_kernel_range(start, end); resched_threshold = lazy_max_pages() << 1; - spin_lock(&vmap_area_lock); + spin_lock(&free_vmap_area_lock); llist_for_each_entry_safe(va, n_va, valist, purge_list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; @@ -1306,9 +1306,9 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) atomic_long_sub(nr, &vmap_lazy_nr); if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) - cond_resched_lock(&vmap_area_lock); + cond_resched_lock(&free_vmap_area_lock); } - spin_unlock(&vmap_area_lock); + spin_unlock(&free_vmap_area_lock); return true; } @@ -2030,15 +2030,21 @@ int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) } EXPORT_SYMBOL_GPL(map_vm_area); -static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, - unsigned long flags, const void *caller) +static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, + struct vmap_area *va, unsigned long flags, const void *caller) { - spin_lock(&vmap_area_lock); vm->flags = flags; vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; va->vm = vm; +} + +static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, + unsigned long flags, const void *caller) +{ + spin_lock(&vmap_area_lock); + setup_vmalloc_vm_locked(vm, va, flags, caller); spin_unlock(&vmap_area_lock); } @@ -3298,7 +3304,7 @@ struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, goto err_free; } retry: - spin_lock(&vmap_area_lock); + spin_lock(&free_vmap_area_lock); /* start scanning - we scan from the top, begin with the last area */ area = term_area = last_area; @@ -3380,29 +3386,38 @@ retry: va = vas[area]; va->va_start = start; va->va_end = start + size; - - insert_vmap_area(va, &vmap_area_root, &vmap_area_list); } - spin_unlock(&vmap_area_lock); + spin_unlock(&free_vmap_area_lock); /* insert all vm's */ - for (area = 0; area < nr_vms; area++) - setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, + spin_lock(&vmap_area_lock); + for (area = 0; area < nr_vms; area++) { + insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); + + setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, pcpu_get_vm_areas); + } + spin_unlock(&vmap_area_lock); kfree(vas); return vms; recovery: - /* Remove previously inserted areas. */ + /* + * Remove previously allocated areas. There is no + * need in removing these areas from the busy tree, + * because they are inserted only on the final step + * and when pcpu_get_vm_areas() is success. + */ while (area--) { - __free_vmap_area(vas[area]); + merge_or_add_vmap_area(vas[area], + &free_vmap_area_root, &free_vmap_area_list); vas[area] = NULL; } overflow: - spin_unlock(&vmap_area_lock); + spin_unlock(&free_vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = true; @@ -3453,9 +3468,12 @@ void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) #ifdef CONFIG_PROC_FS static void *s_start(struct seq_file *m, loff_t *pos) + __acquires(&vmap_purge_lock) __acquires(&vmap_area_lock) { + mutex_lock(&vmap_purge_lock); spin_lock(&vmap_area_lock); + return seq_list_start(&vmap_area_list, *pos); } @@ -3465,8 +3483,10 @@ static void *s_next(struct seq_file *m, void *p, loff_t *pos) } static void s_stop(struct seq_file *m, void *p) + __releases(&vmap_purge_lock) __releases(&vmap_area_lock) { + mutex_unlock(&vmap_purge_lock); spin_unlock(&vmap_area_lock); } -- cgit v1.2.3 From 3c5c3cfb9ef4da957e3357a2bd36f76ee34c0862 Mon Sep 17 00:00:00 2001 From: Daniel Axtens Date: Sat, 30 Nov 2019 17:54:50 -0800 Subject: kasan: support backing vmalloc space with real shadow memory Patch series "kasan: support backing vmalloc space with real shadow memory", v11. Currently, vmalloc space is backed by the early shadow page. This means that kasan is incompatible with VMAP_STACK. This series provides a mechanism to back vmalloc space with real, dynamically allocated memory. I have only wired up x86, because that's the only currently supported arch I can work with easily, but it's very easy to wire up other architectures, and it appears that there is some work-in-progress code to do this on arm64 and s390. This has been discussed before in the context of VMAP_STACK: - https://bugzilla.kernel.org/show_bug.cgi?id=202009 - https://lkml.org/lkml/2018/7/22/198 - https://lkml.org/lkml/2019/7/19/822 In terms of implementation details: Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=1) This is unfortunate but given that this is a debug feature only, not the end of the world. The benchmarks are also a stress-test for the vmalloc subsystem: they're not indicative of an overall 2x slowdown! This patch (of 4): Hook into vmalloc and vmap, and dynamically allocate real shadow memory to back the mappings. Most mappings in vmalloc space are small, requiring less than a full page of shadow space. Allocating a full shadow page per mapping would therefore be wasteful. Furthermore, to ensure that different mappings use different shadow pages, mappings would have to be aligned to KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE. Instead, share backing space across multiple mappings. Allocate a backing page when a mapping in vmalloc space uses a particular page of the shadow region. This page can be shared by other vmalloc mappings later on. We hook in to the vmap infrastructure to lazily clean up unused shadow memory. To avoid the difficulties around swapping mappings around, this code expects that the part of the shadow region that covers the vmalloc space will not be covered by the early shadow page, but will be left unmapped. This will require changes in arch-specific code. This allows KASAN with VMAP_STACK, and may be helpful for architectures that do not have a separate module space (e.g. powerpc64, which I am currently working on). It also allows relaxing the module alignment back to PAGE_SIZE. Testing with test_vmalloc.sh on an x86 VM with 2 vCPUs shows that: - Turning on KASAN, inline instrumentation, without vmalloc, introuduces a 4.1x-4.2x slowdown in vmalloc operations. - Turning this on introduces the following slowdowns over KASAN: * ~1.76x slower single-threaded (test_vmalloc.sh performance) * ~2.18x slower when both cpus are performing operations simultaneously (test_vmalloc.sh sequential_test_order=3D1) This is unfortunate but given that this is a debug feature only, not the end of the world. The full benchmark results are: Performance No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 662004 11404956 17.23 19144610 28.92 1.68 full_fit_alloc_test 710950 12029752 16.92 13184651 18.55 1.10 long_busy_list_alloc_test 9431875 43990172 4.66 82970178 8.80 1.89 random_size_alloc_test 5033626 23061762 4.58 47158834 9.37 2.04 fix_align_alloc_test 1252514 15276910 12.20 31266116 24.96 2.05 random_size_align_alloc_te 1648501 14578321 8.84 25560052 15.51 1.75 align_shift_alloc_test 147 830 5.65 5692 38.72 6.86 pcpu_alloc_test 80732 125520 1.55 140864 1.74 1.12 Total Cycles 119240774314 763211341128 6.40 1390338696894 11.66 1.82 Sequential, 2 cpus No KASAN KASAN original x baseline KASAN vmalloc x baseline x KASAN fix_size_alloc_test 1423150 14276550 10.03 27733022 19.49 1.94 full_fit_alloc_test 1754219 14722640 8.39 15030786 8.57 1.02 long_busy_list_alloc_test 11451858 52154973 4.55 107016027 9.34 2.05 random_size_alloc_test 5989020 26735276 4.46 68885923 11.50 2.58 fix_align_alloc_test 2050976 20166900 9.83 50491675 24.62 2.50 random_size_align_alloc_te 2858229 17971700 6.29 38730225 13.55 2.16 align_shift_alloc_test 405 6428 15.87 26253 64.82 4.08 pcpu_alloc_test 127183 151464 1.19 216263 1.70 1.43 Total Cycles 54181269392 308723699764 5.70 650772566394 12.01 2.11 fix_size_alloc_test 1420404 14289308 10.06 27790035 19.56 1.94 full_fit_alloc_test 1736145 14806234 8.53 15274301 8.80 1.03 long_busy_list_alloc_test 11404638 52270785 4.58 107550254 9.43 2.06 random_size_alloc_test 6017006 26650625 4.43 68696127 11.42 2.58 fix_align_alloc_test 2045504 20280985 9.91 50414862 24.65 2.49 random_size_align_alloc_te 2845338 17931018 6.30 38510276 13.53 2.15 align_shift_alloc_test 472 3760 7.97 9656 20.46 2.57 pcpu_alloc_test 118643 132732 1.12 146504 1.23 1.10 Total Cycles 54040011688 309102805492 5.72 651325675652 12.05 2.11 [dja@axtens.net: fixups] Link: http://lkml.kernel.org/r/20191120052719.7201-1-dja@axtens.net Link: https://bugzilla.kernel.org/show_bug.cgi?id=3D202009 Link: http://lkml.kernel.org/r/20191031093909.9228-2-dja@axtens.net Signed-off-by: Mark Rutland [shadow rework] Signed-off-by: Daniel Axtens Co-developed-by: Mark Rutland Acked-by: Vasily Gorbik Reviewed-by: Andrey Ryabinin Cc: Alexander Potapenko Cc: Dmitry Vyukov Cc: Christophe Leroy Cc: Qian Cai Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds --- Documentation/dev-tools/kasan.rst | 63 +++++++++++ include/linux/kasan.h | 31 +++++ include/linux/moduleloader.h | 2 +- include/linux/vmalloc.h | 12 ++ lib/Kconfig.kasan | 16 +++ mm/kasan/common.c | 233 ++++++++++++++++++++++++++++++++++++++ mm/kasan/generic_report.c | 3 + mm/kasan/kasan.h | 1 + mm/vmalloc.c | 56 +++++++-- 9 files changed, 408 insertions(+), 9 deletions(-) (limited to 'mm/vmalloc.c') diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst index 525296121d89..e4d66e7c50de 100644 --- a/Documentation/dev-tools/kasan.rst +++ b/Documentation/dev-tools/kasan.rst @@ -218,3 +218,66 @@ brk handler is used to print bug reports. A potential expansion of this mode is a hardware tag-based mode, which would use hardware memory tagging support instead of compiler instrumentation and manual shadow memory manipulation. + +What memory accesses are sanitised by KASAN? +-------------------------------------------- + +The kernel maps memory in a number of different parts of the address +space. This poses something of a problem for KASAN, which requires +that all addresses accessed by instrumented code have a valid shadow +region. + +The range of kernel virtual addresses is large: there is not enough +real memory to support a real shadow region for every address that +could be accessed by the kernel. + +By default +~~~~~~~~~~ + +By default, architectures only map real memory over the shadow region +for the linear mapping (and potentially other small areas). For all +other areas - such as vmalloc and vmemmap space - a single read-only +page is mapped over the shadow area. This read-only shadow page +declares all memory accesses as permitted. + +This presents a problem for modules: they do not live in the linear +mapping, but in a dedicated module space. By hooking in to the module +allocator, KASAN can temporarily map real shadow memory to cover +them. This allows detection of invalid accesses to module globals, for +example. + +This also creates an incompatibility with ``VMAP_STACK``: if the stack +lives in vmalloc space, it will be shadowed by the read-only page, and +the kernel will fault when trying to set up the shadow data for stack +variables. + +CONFIG_KASAN_VMALLOC +~~~~~~~~~~~~~~~~~~~~ + +With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the +cost of greater memory usage. Currently this is only supported on x86. + +This works by hooking into vmalloc and vmap, and dynamically +allocating real shadow memory to back the mappings. + +Most mappings in vmalloc space are small, requiring less than a full +page of shadow space. Allocating a full shadow page per mapping would +therefore be wasteful. Furthermore, to ensure that different mappings +use different shadow pages, mappings would have to be aligned to +``KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE``. + +Instead, we share backing space across multiple mappings. We allocate +a backing page when a mapping in vmalloc space uses a particular page +of the shadow region. This page can be shared by other vmalloc +mappings later on. + +We hook in to the vmap infrastructure to lazily clean up unused shadow +memory. + +To avoid the difficulties around swapping mappings around, we expect +that the part of the shadow region that covers the vmalloc space will +not be covered by the early shadow page, but will be left +unmapped. This will require changes in arch-specific code. + +This allows ``VMAP_STACK`` support on x86, and can simplify support of +architectures that do not have a fixed module region. diff --git a/include/linux/kasan.h b/include/linux/kasan.h index cc8a03cc9674..4f404c565db1 100644 --- a/include/linux/kasan.h +++ b/include/linux/kasan.h @@ -70,8 +70,18 @@ struct kasan_cache { int free_meta_offset; }; +/* + * These functions provide a special case to support backing module + * allocations with real shadow memory. With KASAN vmalloc, the special + * case is unnecessary, as the work is handled in the generic case. + */ +#ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size); void kasan_free_shadow(const struct vm_struct *vm); +#else +static inline int kasan_module_alloc(void *addr, size_t size) { return 0; } +static inline void kasan_free_shadow(const struct vm_struct *vm) {} +#endif int kasan_add_zero_shadow(void *start, unsigned long size); void kasan_remove_zero_shadow(void *start, unsigned long size); @@ -194,4 +204,25 @@ static inline void *kasan_reset_tag(const void *addr) #endif /* CONFIG_KASAN_SW_TAGS */ +#ifdef CONFIG_KASAN_VMALLOC +int kasan_populate_vmalloc(unsigned long requested_size, + struct vm_struct *area); +void kasan_poison_vmalloc(void *start, unsigned long size); +void kasan_release_vmalloc(unsigned long start, unsigned long end, + unsigned long free_region_start, + unsigned long free_region_end); +#else +static inline int kasan_populate_vmalloc(unsigned long requested_size, + struct vm_struct *area) +{ + return 0; +} + +static inline void kasan_poison_vmalloc(void *start, unsigned long size) {} +static inline void kasan_release_vmalloc(unsigned long start, + unsigned long end, + unsigned long free_region_start, + unsigned long free_region_end) {} +#endif + #endif /* LINUX_KASAN_H */ diff --git a/include/linux/moduleloader.h b/include/linux/moduleloader.h index 5229c18025e9..ca92aea8a6bd 100644 --- a/include/linux/moduleloader.h +++ b/include/linux/moduleloader.h @@ -91,7 +91,7 @@ void module_arch_cleanup(struct module *mod); /* Any cleanup before freeing mod->module_init */ void module_arch_freeing_init(struct module *mod); -#ifdef CONFIG_KASAN +#if defined(CONFIG_KASAN) && !defined(CONFIG_KASAN_VMALLOC) #include #define MODULE_ALIGN (PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) #else diff --git a/include/linux/vmalloc.h b/include/linux/vmalloc.h index b4c58a191eb1..a4b241102771 100644 --- a/include/linux/vmalloc.h +++ b/include/linux/vmalloc.h @@ -22,6 +22,18 @@ struct notifier_block; /* in notifier.h */ #define VM_UNINITIALIZED 0x00000020 /* vm_struct is not fully initialized */ #define VM_NO_GUARD 0x00000040 /* don't add guard page */ #define VM_KASAN 0x00000080 /* has allocated kasan shadow memory */ + +/* + * VM_KASAN is used slighly differently depending on CONFIG_KASAN_VMALLOC. + * + * If IS_ENABLED(CONFIG_KASAN_VMALLOC), VM_KASAN is set on a vm_struct after + * shadow memory has been mapped. It's used to handle allocation errors so that + * we don't try to poision shadow on free if it was never allocated. + * + * Otherwise, VM_KASAN is set for kasan_module_alloc() allocations and used to + * determine which allocations need the module shadow freed. + */ + /* * Memory with VM_FLUSH_RESET_PERMS cannot be freed in an interrupt or with * vfree_atomic(). diff --git a/lib/Kconfig.kasan b/lib/Kconfig.kasan index 6c9682ce0254..81f5464ea9e1 100644 --- a/lib/Kconfig.kasan +++ b/lib/Kconfig.kasan @@ -6,6 +6,9 @@ config HAVE_ARCH_KASAN config HAVE_ARCH_KASAN_SW_TAGS bool +config HAVE_ARCH_KASAN_VMALLOC + bool + config CC_HAS_KASAN_GENERIC def_bool $(cc-option, -fsanitize=kernel-address) @@ -142,6 +145,19 @@ config KASAN_SW_TAGS_IDENTIFY (use-after-free or out-of-bounds) at the cost of increased memory consumption. +config KASAN_VMALLOC + bool "Back mappings in vmalloc space with real shadow memory" + depends on KASAN && HAVE_ARCH_KASAN_VMALLOC + help + By default, the shadow region for vmalloc space is the read-only + zero page. This means that KASAN cannot detect errors involving + vmalloc space. + + Enabling this option will hook in to vmap/vmalloc and back those + mappings with real shadow memory allocated on demand. This allows + for KASAN to detect more sorts of errors (and to support vmapped + stacks), but at the cost of higher memory usage. + config TEST_KASAN tristate "Module for testing KASAN for bug detection" depends on m && KASAN diff --git a/mm/kasan/common.c b/mm/kasan/common.c index 6814d6d6a023..df3371d5c572 100644 --- a/mm/kasan/common.c +++ b/mm/kasan/common.c @@ -36,6 +36,8 @@ #include #include +#include + #include "kasan.h" #include "../slab.h" @@ -590,6 +592,7 @@ void kasan_kfree_large(void *ptr, unsigned long ip) /* The object will be poisoned by page_alloc. */ } +#ifndef CONFIG_KASAN_VMALLOC int kasan_module_alloc(void *addr, size_t size) { void *ret; @@ -625,6 +628,7 @@ void kasan_free_shadow(const struct vm_struct *vm) if (vm->flags & VM_KASAN) vfree(kasan_mem_to_shadow(vm->addr)); } +#endif extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip); @@ -744,3 +748,232 @@ static int __init kasan_memhotplug_init(void) core_initcall(kasan_memhotplug_init); #endif + +#ifdef CONFIG_KASAN_VMALLOC +static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr, + void *unused) +{ + unsigned long page; + pte_t pte; + + if (likely(!pte_none(*ptep))) + return 0; + + page = __get_free_page(GFP_KERNEL); + if (!page) + return -ENOMEM; + + memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE); + pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL); + + spin_lock(&init_mm.page_table_lock); + if (likely(pte_none(*ptep))) { + set_pte_at(&init_mm, addr, ptep, pte); + page = 0; + } + spin_unlock(&init_mm.page_table_lock); + if (page) + free_page(page); + return 0; +} + +int kasan_populate_vmalloc(unsigned long requested_size, struct vm_struct *area) +{ + unsigned long shadow_start, shadow_end; + int ret; + + shadow_start = (unsigned long)kasan_mem_to_shadow(area->addr); + shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE); + shadow_end = (unsigned long)kasan_mem_to_shadow(area->addr + + area->size); + shadow_end = ALIGN(shadow_end, PAGE_SIZE); + + ret = apply_to_page_range(&init_mm, shadow_start, + shadow_end - shadow_start, + kasan_populate_vmalloc_pte, NULL); + if (ret) + return ret; + + flush_cache_vmap(shadow_start, shadow_end); + + kasan_unpoison_shadow(area->addr, requested_size); + + area->flags |= VM_KASAN; + + /* + * We need to be careful about inter-cpu effects here. Consider: + * + * CPU#0 CPU#1 + * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ; + * p[99] = 1; + * + * With compiler instrumentation, that ends up looking like this: + * + * CPU#0 CPU#1 + * // vmalloc() allocates memory + * // let a = area->addr + * // we reach kasan_populate_vmalloc + * // and call kasan_unpoison_shadow: + * STORE shadow(a), unpoison_val + * ... + * STORE shadow(a+99), unpoison_val x = LOAD p + * // rest of vmalloc process + * STORE p, a LOAD shadow(x+99) + * + * If there is no barrier between the end of unpoisioning the shadow + * and the store of the result to p, the stores could be committed + * in a different order by CPU#0, and CPU#1 could erroneously observe + * poison in the shadow. + * + * We need some sort of barrier between the stores. + * + * In the vmalloc() case, this is provided by a smp_wmb() in + * clear_vm_uninitialized_flag(). In the per-cpu allocator and in + * get_vm_area() and friends, the caller gets shadow allocated but + * doesn't have any pages mapped into the virtual address space that + * has been reserved. Mapping those pages in will involve taking and + * releasing a page-table lock, which will provide the barrier. + */ + + return 0; +} + +/* + * Poison the shadow for a vmalloc region. Called as part of the + * freeing process at the time the region is freed. + */ +void kasan_poison_vmalloc(void *start, unsigned long size) +{ + size = round_up(size, KASAN_SHADOW_SCALE_SIZE); + kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID); +} + +static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr, + void *unused) +{ + unsigned long page; + + page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT); + + spin_lock(&init_mm.page_table_lock); + + if (likely(!pte_none(*ptep))) { + pte_clear(&init_mm, addr, ptep); + free_page(page); + } + spin_unlock(&init_mm.page_table_lock); + + return 0; +} + +/* + * Release the backing for the vmalloc region [start, end), which + * lies within the free region [free_region_start, free_region_end). + * + * This can be run lazily, long after the region was freed. It runs + * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap + * infrastructure. + * + * How does this work? + * ------------------- + * + * We have a region that is page aligned, labelled as A. + * That might not map onto the shadow in a way that is page-aligned: + * + * start end + * v v + * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc + * -------- -------- -------- -------- -------- + * | | | | | + * | | | /-------/ | + * \-------\|/------/ |/---------------/ + * ||| || + * |??AAAAAA|AAAAAAAA|AA??????| < shadow + * (1) (2) (3) + * + * First we align the start upwards and the end downwards, so that the + * shadow of the region aligns with shadow page boundaries. In the + * example, this gives us the shadow page (2). This is the shadow entirely + * covered by this allocation. + * + * Then we have the tricky bits. We want to know if we can free the + * partially covered shadow pages - (1) and (3) in the example. For this, + * we are given the start and end of the free region that contains this + * allocation. Extending our previous example, we could have: + * + * free_region_start free_region_end + * | start end | + * v v v v + * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc + * -------- -------- -------- -------- -------- + * | | | | | + * | | | /-------/ | + * \-------\|/------/ |/---------------/ + * ||| || + * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow + * (1) (2) (3) + * + * Once again, we align the start of the free region up, and the end of + * the free region down so that the shadow is page aligned. So we can free + * page (1) - we know no allocation currently uses anything in that page, + * because all of it is in the vmalloc free region. But we cannot free + * page (3), because we can't be sure that the rest of it is unused. + * + * We only consider pages that contain part of the original region for + * freeing: we don't try to free other pages from the free region or we'd + * end up trying to free huge chunks of virtual address space. + * + * Concurrency + * ----------- + * + * How do we know that we're not freeing a page that is simultaneously + * being used for a fresh allocation in kasan_populate_vmalloc(_pte)? + * + * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running + * at the same time. While we run under free_vmap_area_lock, the population + * code does not. + * + * free_vmap_area_lock instead operates to ensure that the larger range + * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and + * the per-cpu region-finding algorithm both run under free_vmap_area_lock, + * no space identified as free will become used while we are running. This + * means that so long as we are careful with alignment and only free shadow + * pages entirely covered by the free region, we will not run in to any + * trouble - any simultaneous allocations will be for disjoint regions. + */ +void kasan_release_vmalloc(unsigned long start, unsigned long end, + unsigned long free_region_start, + unsigned long free_region_end) +{ + void *shadow_start, *shadow_end; + unsigned long region_start, region_end; + + region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); + region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); + + free_region_start = ALIGN(free_region_start, + PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); + + if (start != region_start && + free_region_start < region_start) + region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; + + free_region_end = ALIGN_DOWN(free_region_end, + PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE); + + if (end != region_end && + free_region_end > region_end) + region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE; + + shadow_start = kasan_mem_to_shadow((void *)region_start); + shadow_end = kasan_mem_to_shadow((void *)region_end); + + if (shadow_end > shadow_start) { + apply_to_page_range(&init_mm, (unsigned long)shadow_start, + (unsigned long)(shadow_end - shadow_start), + kasan_depopulate_vmalloc_pte, NULL); + flush_tlb_kernel_range((unsigned long)shadow_start, + (unsigned long)shadow_end); + } +} +#endif diff --git a/mm/kasan/generic_report.c b/mm/kasan/generic_report.c index 36c645939bc9..2d97efd4954f 100644 --- a/mm/kasan/generic_report.c +++ b/mm/kasan/generic_report.c @@ -86,6 +86,9 @@ static const char *get_shadow_bug_type(struct kasan_access_info *info) case KASAN_ALLOCA_RIGHT: bug_type = "alloca-out-of-bounds"; break; + case KASAN_VMALLOC_INVALID: + bug_type = "vmalloc-out-of-bounds"; + break; } return bug_type; diff --git a/mm/kasan/kasan.h b/mm/kasan/kasan.h index 35cff6bbb716..3a083274628e 100644 --- a/mm/kasan/kasan.h +++ b/mm/kasan/kasan.h @@ -25,6 +25,7 @@ #endif #define KASAN_GLOBAL_REDZONE 0xFA /* redzone for global variable */ +#define KASAN_VMALLOC_INVALID 0xF9 /* unallocated space in vmapped page */ /* * Stack redzone shadow values diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 33e245ebe70c..4d3b3d60d893 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -683,7 +683,7 @@ insert_vmap_area_augment(struct vmap_area *va, * free area is inserted. If VA has been merged, it is * freed. */ -static __always_inline void +static __always_inline struct vmap_area * merge_or_add_vmap_area(struct vmap_area *va, struct rb_root *root, struct list_head *head) { @@ -750,7 +750,10 @@ merge_or_add_vmap_area(struct vmap_area *va, /* Free vmap_area object. */ kmem_cache_free(vmap_area_cachep, va); - return; + + /* Point to the new merged area. */ + va = sibling; + merged = true; } } @@ -759,6 +762,8 @@ insert: link_va(va, root, parent, link, head); augment_tree_propagate_from(va); } + + return va; } static __always_inline bool @@ -1196,8 +1201,7 @@ static void free_vmap_area(struct vmap_area *va) * Insert/Merge it back to the free tree/list. */ spin_lock(&free_vmap_area_lock); - merge_or_add_vmap_area(va, - &free_vmap_area_root, &free_vmap_area_list); + merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list); spin_unlock(&free_vmap_area_lock); } @@ -1294,14 +1298,20 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) spin_lock(&free_vmap_area_lock); llist_for_each_entry_safe(va, n_va, valist, purge_list) { unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; + unsigned long orig_start = va->va_start; + unsigned long orig_end = va->va_end; /* * Finally insert or merge lazily-freed area. It is * detached and there is no need to "unlink" it from * anything. */ - merge_or_add_vmap_area(va, - &free_vmap_area_root, &free_vmap_area_list); + va = merge_or_add_vmap_area(va, &free_vmap_area_root, + &free_vmap_area_list); + + if (is_vmalloc_or_module_addr((void *)orig_start)) + kasan_release_vmalloc(orig_start, orig_end, + va->va_start, va->va_end); atomic_long_sub(nr, &vmap_lazy_nr); @@ -2090,6 +2100,22 @@ static struct vm_struct *__get_vm_area_node(unsigned long size, setup_vmalloc_vm(area, va, flags, caller); + /* + * For KASAN, if we are in vmalloc space, we need to cover the shadow + * area with real memory. If we come here through VM_ALLOC, this is + * done by a higher level function that has access to the true size, + * which might not be a full page. + * + * We assume module space comes via VM_ALLOC path. + */ + if (is_vmalloc_addr(area->addr) && !(area->flags & VM_ALLOC)) { + if (kasan_populate_vmalloc(area->size, area)) { + unmap_vmap_area(va); + kfree(area); + return NULL; + } + } + return area; } @@ -2267,6 +2293,9 @@ static void __vunmap(const void *addr, int deallocate_pages) debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); + if (area->flags & VM_KASAN) + kasan_poison_vmalloc(area->addr, area->size); + vm_remove_mappings(area, deallocate_pages); if (deallocate_pages) { @@ -2519,6 +2548,11 @@ void *__vmalloc_node_range(unsigned long size, unsigned long align, if (!addr) return NULL; + if (is_vmalloc_or_module_addr(area->addr)) { + if (kasan_populate_vmalloc(real_size, area)) + return NULL; + } + /* * In this function, newly allocated vm_struct has VM_UNINITIALIZED * flag. It means that vm_struct is not fully initialized. @@ -3400,6 +3434,12 @@ retry: } spin_unlock(&vmap_area_lock); + /* populate the shadow space outside of the lock */ + for (area = 0; area < nr_vms; area++) { + /* assume success here */ + kasan_populate_vmalloc(sizes[area], vms[area]); + } + kfree(vas); return vms; @@ -3411,8 +3451,8 @@ recovery: * and when pcpu_get_vm_areas() is success. */ while (area--) { - merge_or_add_vmap_area(vas[area], - &free_vmap_area_root, &free_vmap_area_list); + merge_or_add_vmap_area(vas[area], &free_vmap_area_root, + &free_vmap_area_list); vas[area] = NULL; } -- cgit v1.2.3