1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/* cksum -- calculate and print POSIX checksums and sizes of files
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
#include <config.h>
#include "cksum.h"
#include <sys/types.h>
#include <x86intrin.h>
#include "system.h"
/* Number of bytes to read at once. */
#define BUFLEN (1 << 16)
bool
cksum_avx512 (FILE *fp, uint_fast32_t *crc_out, uintmax_t *length_out)
{
__m512i buf[BUFLEN / sizeof (__m512i)];
uint_fast32_t crc = 0;
uintmax_t length = 0;
size_t bytes_read;
__m512i single_mult_constant;
__m512i four_mult_constant;
__m512i shuffle_constant;
if (!fp || !crc_out || !length_out)
return false;
/* These constants and general algorithms are taken from the Intel whitepaper
"Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
*/
single_mult_constant = _mm512_set_epi64 (0x8833794C, 0xE6228B11,
0x8833794C, 0xE6228B11,
0x8833794C, 0xE6228B11,
0x8833794C, 0xE6228B11);
four_mult_constant = _mm512_set_epi64 (0xCBCF3BCB, 0x88FE2237,
0xCBCF3BCB, 0x88FE2237,
0xCBCF3BCB, 0x88FE2237,
0xCBCF3BCB, 0x88FE2237);
/* Constant to byteswap a full AVX512 register */
shuffle_constant = _mm512_set_epi8 (0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15,
0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15);
while ((bytes_read = fread (buf, 1, BUFLEN, fp)) > 0)
{
__m512i data;
__m512i data2;
__m512i data3;
__m512i data4;
__m512i data5;
__m512i data6;
__m512i data7;
__m512i data8;
__m512i fold_data;
__m512i xor_crc;
__m512i *datap;
if (ckd_add (&length, length, bytes_read))
{
errno = EOVERFLOW;
return false;
}
datap = (__m512i *)buf;
/* Fold in parallel 32x 16-byte blocks into 16x 16-byte blocks */
if (bytes_read >= 16 * 8 * 4)
{
data = _mm512_loadu_si512 (datap);
data = _mm512_shuffle_epi8 (data, shuffle_constant);
/* XOR in initial CRC value (for us 0 so no effect), or CRC value
calculated for previous BUFLEN buffer from fread */
xor_crc = _mm512_set_epi32 (0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, crc, 0, 0, 0);
crc = 0;
data = _mm512_xor_si512 (data, xor_crc);
data3 = _mm512_loadu_si512 (datap + 1);
data3 = _mm512_shuffle_epi8 (data3, shuffle_constant);
data5 = _mm512_loadu_si512 (datap + 2);
data5 = _mm512_shuffle_epi8 (data5, shuffle_constant);
data7 = _mm512_loadu_si512 (datap + 3);
data7 = _mm512_shuffle_epi8 (data7, shuffle_constant);
while (bytes_read >= 16 * 8 * 4)
{
datap += 4;
/* Do multiplication here for 16x consecutive 16 byte blocks */
data2 = _mm512_clmulepi64_epi128 (data, four_mult_constant,
0x00);
data = _mm512_clmulepi64_epi128 (data, four_mult_constant,
0x11);
data4 = _mm512_clmulepi64_epi128 (data3, four_mult_constant,
0x00);
data3 = _mm512_clmulepi64_epi128 (data3, four_mult_constant,
0x11);
data6 = _mm512_clmulepi64_epi128 (data5, four_mult_constant,
0x00);
data5 = _mm512_clmulepi64_epi128 (data5, four_mult_constant,
0x11);
data8 = _mm512_clmulepi64_epi128 (data7, four_mult_constant,
0x00);
data7 = _mm512_clmulepi64_epi128 (data7, four_mult_constant,
0x11);
/* Now multiplication results for the 16x blocks is xor:ed with
next 16x 16 byte blocks from the buffer. This effectively
"consumes" the first 16x blocks from the buffer.
Keep xor result in variables for multiplication in next
round of loop. */
data = _mm512_xor_si512 (data, data2);
data2 = _mm512_loadu_si512 (datap);
data2 = _mm512_shuffle_epi8 (data2, shuffle_constant);
data = _mm512_xor_si512 (data, data2);
data3 = _mm512_xor_si512 (data3, data4);
data4 = _mm512_loadu_si512 (datap + 1);
data4 = _mm512_shuffle_epi8 (data4, shuffle_constant);
data3 = _mm512_xor_si512 (data3, data4);
data5 = _mm512_xor_si512 (data5, data6);
data6 = _mm512_loadu_si512 (datap + 2);
data6 = _mm512_shuffle_epi8 (data6, shuffle_constant);
data5 = _mm512_xor_si512 (data5, data6);
data7 = _mm512_xor_si512 (data7, data8);
data8 = _mm512_loadu_si512 (datap + 3);
data8 = _mm512_shuffle_epi8 (data8, shuffle_constant);
data7 = _mm512_xor_si512 (data7, data8);
bytes_read -= (16 * 4 * 4);
}
/* At end of loop we write out results from variables back into
the buffer, for use in single fold loop */
data = _mm512_shuffle_epi8 (data, shuffle_constant);
_mm512_storeu_si512 (datap, data);
data3 = _mm512_shuffle_epi8 (data3, shuffle_constant);
_mm512_storeu_si512 (datap + 1, data3);
data5 = _mm512_shuffle_epi8 (data5, shuffle_constant);
_mm512_storeu_si512 (datap + 2, data5);
data7 = _mm512_shuffle_epi8 (data7, shuffle_constant);
_mm512_storeu_si512 (datap + 3, data7);
}
/* Fold two 64-byte blocks into one 64-byte block */
if (bytes_read >= 128)
{
data = _mm512_loadu_si512 (datap);
data = _mm512_shuffle_epi8 (data, shuffle_constant);
xor_crc = _mm512_set_epi32 (0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, crc, 0, 0, 0);
crc = 0;
data = _mm512_xor_si512 (data, xor_crc);
while (bytes_read >= 128)
{
datap++;
data2 = _mm512_clmulepi64_epi128 (data, single_mult_constant,
0x00);
data = _mm512_clmulepi64_epi128 (data, single_mult_constant,
0x11);
fold_data = _mm512_loadu_si512 (datap);
fold_data = _mm512_shuffle_epi8 (fold_data, shuffle_constant);
data = _mm512_xor_si512 (data, data2);
data = _mm512_xor_si512 (data, fold_data);
bytes_read -= 64;
}
data = _mm512_shuffle_epi8 (data, shuffle_constant);
_mm512_storeu_si512 (datap, data);
}
/* And finish up last 0-127 bytes in a byte by byte fashion */
unsigned char *cp = (unsigned char *)datap;
while (bytes_read--)
crc = (crc << 8) ^ crctab[0][((crc >> 24) ^ *cp++) & 0xFF];
if (feof (fp))
break;
}
*crc_out = crc;
*length_out = length;
return !ferror (fp);
}
|