1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
|
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation: version 2 of the License, dated June 1991.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License along
// with this program; if not, see <https://www.gnu.org/licenses/>.
use crate::hash::{HashAlgorithm, ObjectID, GIT_MAX_RAWSZ};
use std::collections::BTreeMap;
use std::convert::TryInto;
use std::io::{self, Write};
/// The type of object stored in the map.
///
/// If this value is `Reserved`, then it is never written to disk and is used primarily to store
/// certain hard-coded objects, like the empty tree, empty blob, or null object ID.
///
/// If this value is `LooseObject`, then this represents a loose object. `Shallow` represents a
/// shallow commit, its parent, or its tree. `Submodule` represents a submodule commit.
#[repr(C)]
#[derive(Debug, Clone, Copy, Ord, PartialOrd, Eq, PartialEq)]
pub enum MapType {
Reserved = 0,
LooseObject = 1,
Shallow = 2,
Submodule = 3,
}
impl MapType {
pub fn from_u32(n: u32) -> Option<MapType> {
match n {
0 => Some(Self::Reserved),
1 => Some(Self::LooseObject),
2 => Some(Self::Shallow),
3 => Some(Self::Submodule),
_ => None,
}
}
}
/// The value of an object stored in a `LooseObjectMemoryMap`.
///
/// This keeps the object ID to which the key is mapped and its kind together.
struct MappedObject {
oid: ObjectID,
kind: MapType,
}
/// Memory storage for a loose object.
struct LooseObjectMemoryMap {
to_compat: BTreeMap<ObjectID, MappedObject>,
to_storage: BTreeMap<ObjectID, MappedObject>,
compat: HashAlgorithm,
storage: HashAlgorithm,
}
impl LooseObjectMemoryMap {
/// Create a new `LooseObjectMemoryMap`.
///
/// The storage and compatibility `HashAlgorithm` instances are used to store the object IDs in
/// the correct map.
fn new(storage: HashAlgorithm, compat: HashAlgorithm) -> LooseObjectMemoryMap {
LooseObjectMemoryMap {
to_compat: BTreeMap::new(),
to_storage: BTreeMap::new(),
compat,
storage,
}
}
fn len(&self) -> usize {
self.to_compat.len()
}
/// Write this map to an interface implementing `std::io::Write`.
fn write<W: Write>(&self, wrtr: W) -> io::Result<()> {
const VERSION_NUMBER: u32 = 1;
const NUM_OBJECT_FORMATS: u32 = 2;
const PADDING: [u8; 4] = [0u8; 4];
let mut wrtr = wrtr;
let header_size: u32 = 4 + 4 + 4 + 4 + 4 + (4 + 4 + 8) * 2 + 8;
wrtr.write_all(b"LMAP")?;
wrtr.write_all(&VERSION_NUMBER.to_be_bytes())?;
wrtr.write_all(&header_size.to_be_bytes())?;
wrtr.write_all(&(self.to_compat.len() as u32).to_be_bytes())?;
wrtr.write_all(&NUM_OBJECT_FORMATS.to_be_bytes())?;
let storage_short_len = self.find_short_name_len(&self.to_compat, self.storage);
let compat_short_len = self.find_short_name_len(&self.to_storage, self.compat);
let storage_npadding = Self::required_nul_padding(self.to_compat.len(), storage_short_len);
let compat_npadding = Self::required_nul_padding(self.to_compat.len(), compat_short_len);
let mut offset: u64 = header_size as u64;
for (algo, len, npadding) in &[
(self.storage, storage_short_len, storage_npadding),
(self.compat, compat_short_len, compat_npadding),
] {
wrtr.write_all(&algo.format_id().to_be_bytes())?;
wrtr.write_all(&(*len as u32).to_be_bytes())?;
offset += *npadding;
wrtr.write_all(&offset.to_be_bytes())?;
offset += self.to_compat.len() as u64 * (*len as u64 + algo.raw_len() as u64 + 4);
}
wrtr.write_all(&offset.to_be_bytes())?;
let order_map: BTreeMap<&ObjectID, usize> = self
.to_compat
.keys()
.enumerate()
.map(|(i, oid)| (oid, i))
.collect();
wrtr.write_all(&PADDING[0..storage_npadding as usize])?;
for oid in self.to_compat.keys() {
wrtr.write_all(&oid.as_slice()[0..storage_short_len])?;
}
for oid in self.to_compat.keys() {
wrtr.write_all(oid.as_slice())?;
}
for meta in self.to_compat.values() {
wrtr.write_all(&(meta.kind as u32).to_be_bytes())?;
}
wrtr.write_all(&PADDING[0..compat_npadding as usize])?;
for oid in self.to_storage.keys() {
wrtr.write_all(&oid.as_slice()[0..compat_short_len])?;
}
for meta in self.to_compat.values() {
wrtr.write_all(meta.oid.as_slice())?;
}
for meta in self.to_storage.values() {
wrtr.write_all(&(order_map[&meta.oid] as u32).to_be_bytes())?;
}
Ok(())
}
fn required_nul_padding(nitems: usize, short_len: usize) -> u64 {
let shortened_table_len = nitems as u64 * short_len as u64;
let misalignment = shortened_table_len & 3;
// If the value is 0, return 0; otherwise, return the difference from 4.
(4 - misalignment) & 3
}
fn last_matching_offset(a: &ObjectID, b: &ObjectID, algop: HashAlgorithm) -> usize {
for i in 0..=algop.raw_len() {
if a.hash[i] != b.hash[i] {
return i;
}
}
algop.raw_len()
}
fn find_short_name_len(
&self,
map: &BTreeMap<ObjectID, MappedObject>,
algop: HashAlgorithm,
) -> usize {
if map.len() <= 1 {
return 1;
}
let mut len = 1;
let mut iter = map.keys();
let mut cur = match iter.next() {
Some(cur) => cur,
None => return len,
};
for item in iter {
let offset = Self::last_matching_offset(cur, item, algop);
if offset >= len {
len = offset + 1;
}
cur = item;
}
if len > algop.raw_len() {
algop.raw_len()
} else {
len
}
}
}
struct ObjectFormatData {
data_off: usize,
shortened_len: usize,
full_off: usize,
mapping_off: Option<usize>,
}
pub struct MmapedLooseObjectMapIter<'a> {
offset: usize,
algos: Vec<HashAlgorithm>,
source: &'a MmapedLooseObjectMap<'a>,
}
impl<'a> Iterator for MmapedLooseObjectMapIter<'a> {
type Item = Vec<ObjectID>;
fn next(&mut self) -> Option<Self::Item> {
if self.offset >= self.source.nitems {
return None;
}
let offset = self.offset;
self.offset += 1;
let v: Vec<ObjectID> = self
.algos
.iter()
.cloned()
.filter_map(|algo| self.source.oid_from_offset(offset, algo))
.collect();
if v.len() != self.algos.len() {
return None;
}
Some(v)
}
}
#[allow(dead_code)]
pub struct MmapedLooseObjectMap<'a> {
memory: &'a [u8],
nitems: usize,
meta_off: usize,
obj_formats: BTreeMap<HashAlgorithm, ObjectFormatData>,
main_algo: HashAlgorithm,
}
#[derive(Debug)]
#[allow(dead_code)]
enum MmapedParseError {
HeaderTooSmall,
InvalidSignature,
InvalidVersion,
UnknownAlgorithm,
OffsetTooLarge,
TooFewObjectFormats,
UnalignedData,
InvalidTrailerOffset,
}
#[allow(dead_code)]
impl<'a> MmapedLooseObjectMap<'a> {
fn new(
slice: &'a [u8],
hash_algo: HashAlgorithm,
) -> Result<MmapedLooseObjectMap<'a>, MmapedParseError> {
let object_format_header_size = 4 + 4 + 8;
let trailer_offset_size = 8;
let header_size: usize =
4 + 4 + 4 + 4 + 4 + object_format_header_size * 2 + trailer_offset_size;
if slice.len() < header_size {
return Err(MmapedParseError::HeaderTooSmall);
}
if slice[0..4] != *b"LMAP" {
return Err(MmapedParseError::InvalidSignature);
}
if Self::u32_at_offset(slice, 4) != 1 {
return Err(MmapedParseError::InvalidVersion);
}
let _ = Self::u32_at_offset(slice, 8) as usize;
let nitems = Self::u32_at_offset(slice, 12) as usize;
let nobj_formats = Self::u32_at_offset(slice, 16) as usize;
if nobj_formats < 2 {
return Err(MmapedParseError::TooFewObjectFormats);
}
let mut offset = 20;
let mut meta_off = None;
let mut data = BTreeMap::new();
for i in 0..nobj_formats {
if offset + object_format_header_size + trailer_offset_size > slice.len() {
return Err(MmapedParseError::HeaderTooSmall);
}
let format_id = Self::u32_at_offset(slice, offset);
let shortened_len = Self::u32_at_offset(slice, offset + 4) as usize;
let data_off = Self::u64_at_offset(slice, offset + 8);
let algo = HashAlgorithm::from_format_id(format_id)
.ok_or(MmapedParseError::UnknownAlgorithm)?;
let data_off: usize = data_off
.try_into()
.map_err(|_| MmapedParseError::OffsetTooLarge)?;
// Every object format must have these entries.
let shortened_table_len = shortened_len
.checked_mul(nitems)
.ok_or(MmapedParseError::OffsetTooLarge)?;
let full_off = data_off
.checked_add(shortened_table_len)
.ok_or(MmapedParseError::OffsetTooLarge)?;
Self::verify_aligned(full_off)?;
Self::verify_valid(slice, full_off as u64)?;
let full_length = algo
.raw_len()
.checked_mul(nitems)
.ok_or(MmapedParseError::OffsetTooLarge)?;
let off = full_length
.checked_add(full_off)
.ok_or(MmapedParseError::OffsetTooLarge)?;
Self::verify_aligned(off)?;
Self::verify_valid(slice, off as u64)?;
// This is for the metadata for the first object format and for the order mapping for
// other object formats.
let meta_size = nitems
.checked_mul(4)
.ok_or(MmapedParseError::OffsetTooLarge)?;
let meta_end = off
.checked_add(meta_size)
.ok_or(MmapedParseError::OffsetTooLarge)?;
Self::verify_valid(slice, meta_end as u64)?;
let mut mapping_off = None;
if i == 0 {
meta_off = Some(off);
} else {
mapping_off = Some(off);
}
data.insert(
algo,
ObjectFormatData {
data_off,
shortened_len,
full_off,
mapping_off,
},
);
offset += object_format_header_size;
}
let trailer = Self::u64_at_offset(slice, offset);
Self::verify_aligned(trailer as usize)?;
Self::verify_valid(slice, trailer)?;
let end = trailer
.checked_add(hash_algo.raw_len() as u64)
.ok_or(MmapedParseError::OffsetTooLarge)?;
if end != slice.len() as u64 {
return Err(MmapedParseError::InvalidTrailerOffset);
}
match meta_off {
Some(meta_off) => Ok(MmapedLooseObjectMap {
memory: slice,
nitems,
meta_off,
obj_formats: data,
main_algo: hash_algo,
}),
None => Err(MmapedParseError::TooFewObjectFormats),
}
}
fn iter(&self) -> MmapedLooseObjectMapIter<'_> {
let mut algos = Vec::with_capacity(self.obj_formats.len());
algos.push(self.main_algo);
for algo in self.obj_formats.keys().cloned() {
if algo != self.main_algo {
algos.push(algo);
}
}
MmapedLooseObjectMapIter {
offset: 0,
algos,
source: self,
}
}
/// Treats `sl` as if it were a set of slices of `wanted.len()` bytes, and searches for
/// `wanted` within it.
///
/// If found, returns the offset of the subslice in `sl`.
///
/// ```
/// let sl = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
///
/// assert_eq!(MmapedLooseObjectMap::binary_search_slice(sl, &[2, 3]), Some(1));
/// assert_eq!(MmapedLooseObjectMap::binary_search_slice(sl, &[6, 7]), Some(4));
/// assert_eq!(MmapedLooseObjectMap::binary_search_slice(sl, &[1, 2]), None);
/// assert_eq!(MmapedLooseObjectMap::binary_search_slice(sl, &[10, 20]), None);
/// ```
fn binary_search_slice(sl: &[u8], wanted: &[u8]) -> Option<usize> {
let len = wanted.len();
let res = sl.binary_search_by(|item| {
// We would like element_offset, but that is currently nightly only. Instead, do a
// pointer subtraction to find the index.
let index = unsafe { (item as *const u8).offset_from(sl.as_ptr()) } as usize;
// Now we have the index of this object. Round it down to the nearest full-sized
// chunk to find the actual offset where this starts.
let index = index - (index % len);
// Compute the comparison of that value instead, which will provide the expected
// result.
sl[index..index + wanted.len()].cmp(wanted)
});
res.ok().map(|offset| offset / len)
}
/// Look up `oid` in the map in order to convert it to `algo`.
///
/// If this object is in the map, return the offset in the table for the main algorithm.
fn look_up_object(&self, oid: &ObjectID) -> Option<usize> {
let oid_algo = HashAlgorithm::from_u32(oid.algo)?;
let params = self.obj_formats.get(&oid_algo)?;
let short_table =
&self.memory[params.data_off..params.data_off + (params.shortened_len * self.nitems)];
let index =
Self::binary_search_slice(short_table, &oid.as_slice()[0..params.shortened_len])?;
match params.mapping_off {
Some(from_off) => {
// oid is in a compatibility algorithm. Find the mapping index.
let mapped = Self::u32_at_offset(self.memory, from_off + index * 4) as usize;
if mapped >= self.nitems {
return None;
}
let oid_offset = params.full_off + mapped * oid_algo.raw_len();
if self.memory[oid_offset..oid_offset + oid_algo.raw_len()] != *oid.as_slice() {
return None;
}
Some(mapped)
}
None => {
// oid is in the main algorithm. Find the object ID in the main map to confirm
// it's correct.
let oid_offset = params.full_off + index * oid_algo.raw_len();
if self.memory[oid_offset..oid_offset + oid_algo.raw_len()] != *oid.as_slice() {
return None;
}
Some(index)
}
}
}
#[allow(dead_code)]
fn map_object(&self, oid: &ObjectID, algo: HashAlgorithm) -> Option<MappedObject> {
let main = self.look_up_object(oid)?;
let meta = MapType::from_u32(Self::u32_at_offset(self.memory, self.meta_off + (main * 4)))?;
Some(MappedObject {
oid: self.oid_from_offset(main, algo)?,
kind: meta,
})
}
fn map_oid(&self, oid: &ObjectID, algo: HashAlgorithm) -> Option<ObjectID> {
if algo as u32 == oid.algo {
return Some(oid.clone());
}
let main = self.look_up_object(oid)?;
self.oid_from_offset(main, algo)
}
fn oid_from_offset(&self, offset: usize, algo: HashAlgorithm) -> Option<ObjectID> {
let aparams = self.obj_formats.get(&algo)?;
let mut hash = [0u8; GIT_MAX_RAWSZ];
let len = algo.raw_len();
let oid_off = aparams.full_off + (offset * len);
hash[0..len].copy_from_slice(&self.memory[oid_off..oid_off + len]);
Some(ObjectID {
hash,
algo: algo as u32,
})
}
fn u32_at_offset(slice: &[u8], offset: usize) -> u32 {
u32::from_be_bytes(slice[offset..offset + 4].try_into().unwrap())
}
fn u64_at_offset(slice: &[u8], offset: usize) -> u64 {
u64::from_be_bytes(slice[offset..offset + 8].try_into().unwrap())
}
fn verify_aligned(offset: usize) -> Result<(), MmapedParseError> {
if (offset & 3) != 0 {
return Err(MmapedParseError::UnalignedData);
}
Ok(())
}
fn verify_valid(slice: &[u8], offset: u64) -> Result<(), MmapedParseError> {
if offset >= slice.len() as u64 {
return Err(MmapedParseError::OffsetTooLarge);
}
Ok(())
}
}
/// A map for loose and other non-packed object IDs that maps between a storage and compatibility
/// mapping.
///
/// In addition to the in-memory option, there is an optional batched storage, which can be used to
/// write objects to disk in an efficient way.
pub struct LooseObjectMap {
mem: LooseObjectMemoryMap,
batch: Option<LooseObjectMemoryMap>,
}
impl LooseObjectMap {
/// Create a new `LooseObjectMap` with the given hash algorithms.
///
/// This initializes the memory map to automatically map the empty tree, empty blob, and null
/// object ID.
pub fn new(storage: HashAlgorithm, compat: HashAlgorithm) -> LooseObjectMap {
let mut map = LooseObjectMemoryMap::new(storage, compat);
for (main, compat) in &[
(storage.empty_tree(), compat.empty_tree()),
(storage.empty_blob(), compat.empty_blob()),
(storage.null_oid(), compat.null_oid()),
] {
map.to_storage.insert(
(*compat).clone(),
MappedObject {
oid: (*main).clone(),
kind: MapType::Reserved,
},
);
map.to_compat.insert(
(*main).clone(),
MappedObject {
oid: (*compat).clone(),
kind: MapType::Reserved,
},
);
}
LooseObjectMap {
mem: map,
batch: None,
}
}
pub fn hash_algo(&self) -> HashAlgorithm {
self.mem.storage
}
/// Start a batch for efficient writing.
///
/// If there is already a batch started, this does nothing and the existing batch is retained.
pub fn start_batch(&mut self) {
if self.batch.is_none() {
self.batch = Some(LooseObjectMemoryMap::new(self.mem.storage, self.mem.compat));
}
}
pub fn batch_len(&self) -> Option<usize> {
self.batch.as_ref().map(|b| b.len())
}
/// If a batch exists, write it to the writer.
pub fn finish_batch<W: Write>(&mut self, w: W) -> io::Result<()> {
if let Some(txn) = self.batch.take() {
txn.write(w)?;
}
Ok(())
}
/// If a batch exists, write it to the writer.
pub fn abort_batch(&mut self) {
self.batch = None;
}
/// Return whether there is a batch already started.
///
/// If you just want a batch to exist and don't care whether one has already been started, you
/// may simply call `start_batch` unconditionally.
pub fn has_batch(&self) -> bool {
self.batch.is_some()
}
/// Insert an object into the map.
///
/// If `write` is true and there is a batch started, write the object into the batch as well as
/// into the memory map.
pub fn insert(&mut self, oid1: &ObjectID, oid2: &ObjectID, kind: MapType, write: bool) {
let (compat_oid, storage_oid) =
if HashAlgorithm::from_u32(oid1.algo) == Some(self.mem.compat) {
(oid1, oid2)
} else {
(oid2, oid1)
};
Self::insert_into(&mut self.mem, storage_oid, compat_oid, kind);
if write {
if let Some(ref mut batch) = self.batch {
Self::insert_into(batch, storage_oid, compat_oid, kind);
}
}
}
fn insert_into(
map: &mut LooseObjectMemoryMap,
storage: &ObjectID,
compat: &ObjectID,
kind: MapType,
) {
map.to_compat.insert(
storage.clone(),
MappedObject {
oid: compat.clone(),
kind,
},
);
map.to_storage.insert(
compat.clone(),
MappedObject {
oid: storage.clone(),
kind,
},
);
}
#[allow(dead_code)]
fn map_object(&self, oid: &ObjectID, algo: HashAlgorithm) -> Option<&MappedObject> {
let map = if algo == self.mem.storage {
&self.mem.to_storage
} else {
&self.mem.to_compat
};
map.get(oid)
}
#[allow(dead_code)]
fn map_oid<'a, 'b: 'a>(
&'b self,
oid: &'a ObjectID,
algo: HashAlgorithm,
) -> Option<&'a ObjectID> {
if algo as u32 == oid.algo {
return Some(oid);
}
let entry = self.map_object(oid, algo);
entry.map(|obj| &obj.oid)
}
}
#[cfg(test)]
mod tests {
use super::{LooseObjectMap, LooseObjectMemoryMap, MapType, MmapedLooseObjectMap};
use crate::hash::{HashAlgorithm, Hasher, ObjectID};
use std::convert::TryInto;
use std::io::{self, Cursor, Write};
struct TrailingWriter {
curs: Cursor<Vec<u8>>,
hasher: Hasher,
}
impl TrailingWriter {
fn new() -> TrailingWriter {
TrailingWriter {
curs: Cursor::new(Vec::new()),
hasher: Hasher::new(HashAlgorithm::SHA256),
}
}
fn finalize(mut self) -> Vec<u8> {
let _ = self.hasher.flush();
let mut v = self.curs.into_inner();
v.extend(self.hasher.into_vec());
v
}
}
impl Write for TrailingWriter {
fn write(&mut self, data: &[u8]) -> io::Result<usize> {
self.hasher.write_all(data)?;
self.curs.write_all(data)?;
Ok(data.len())
}
fn flush(&mut self) -> io::Result<()> {
self.hasher.flush()?;
self.curs.flush()?;
Ok(())
}
}
fn sha1_oid(b: &[u8]) -> ObjectID {
assert_eq!(b.len(), 20);
let mut data = [0u8; 32];
data[0..20].copy_from_slice(b);
ObjectID {
hash: data,
algo: HashAlgorithm::SHA1 as u32,
}
}
fn sha256_oid(b: &[u8]) -> ObjectID {
assert_eq!(b.len(), 32);
ObjectID {
hash: b.try_into().unwrap(),
algo: HashAlgorithm::SHA256 as u32,
}
}
fn test_entries() -> &'static [(&'static str, &'static [u8], &'static [u8], MapType, bool)] {
// These are all example blobs containing the content in the first argument.
&[
("abc", b"\xf2\xba\x8f\x84\xab\x5c\x1b\xce\x84\xa7\xb4\x41\xcb\x19\x59\xcf\xc7\x09\x3b\x7f", b"\xc1\xcf\x6e\x46\x50\x77\x93\x0e\x88\xdc\x51\x36\x64\x1d\x40\x2f\x72\xa2\x29\xdd\xd9\x96\xf6\x27\xd6\x0e\x96\x39\xea\xba\x35\xa6", MapType::LooseObject, false),
("def", b"\x0c\x00\x38\x32\xe7\xbf\xa9\xca\x8b\x5c\x20\x35\xc9\xbd\x68\x4a\x5f\x26\x23\xbc", b"\x8a\x90\x17\x26\x48\x4d\xb0\xf2\x27\x9f\x30\x8d\x58\x96\xd9\x6b\xf6\x3a\xd6\xde\x95\x7c\xa3\x8a\xdc\x33\x61\x68\x03\x6e\xf6\x63", MapType::Shallow, true),
("ghi", b"\x45\xa8\x2e\x29\x5c\x52\x47\x31\x14\xc5\x7c\x18\xf4\xf5\x23\x68\xdf\x2a\x3c\xfd", b"\x6e\x47\x4c\x74\xf5\xd7\x78\x14\xc7\xf7\xf0\x7c\x37\x80\x07\x90\x53\x42\xaf\x42\x81\xe6\x86\x8d\x33\x46\x45\x4b\xb8\x63\xab\xc3", MapType::Submodule, false),
("jkl", b"\x45\x32\x8c\x36\xff\x2e\x9b\x9b\x4e\x59\x2c\x84\x7d\x3f\x9a\x7f\xd9\xb3\xe7\x16", b"\xc3\xee\xf7\x54\xa2\x1e\xc6\x9d\x43\x75\xbe\x6f\x18\x47\x89\xa8\x11\x6f\xd9\x66\xfc\x67\xdc\x31\xd2\x11\x15\x42\xc8\xd5\xa0\xaf", MapType::LooseObject, true),
]
}
fn test_map(write_all: bool) -> Box<LooseObjectMap> {
let mut map = Box::new(LooseObjectMap::new(
HashAlgorithm::SHA256,
HashAlgorithm::SHA1,
));
map.start_batch();
for (_blob_content, sha1, sha256, kind, swap) in test_entries() {
let s256 = sha256_oid(sha256);
let s1 = sha1_oid(sha1);
let write = write_all || (*kind as u32 & 2) == 0;
if *swap {
// Insert the item into the batch arbitrarily based on the type. This tests that
// we can specify either order and we'll do the right thing.
map.insert(&s256, &s1, *kind, write);
} else {
map.insert(&s1, &s256, *kind, write);
}
}
map
}
#[test]
fn can_read_and_write_format() {
for full in &[true, false] {
let mut map = test_map(*full);
let mut wrtr = TrailingWriter::new();
map.finish_batch(&mut wrtr).unwrap();
assert_eq!(map.has_batch(), false);
let data = wrtr.finalize();
MmapedLooseObjectMap::new(&data, HashAlgorithm::SHA256).unwrap();
}
}
#[test]
fn looks_up_from_mmaped() {
let mut map = test_map(true);
let mut wrtr = TrailingWriter::new();
map.finish_batch(&mut wrtr).unwrap();
assert_eq!(map.has_batch(), false);
let data = wrtr.finalize();
let entries = test_entries();
let map = MmapedLooseObjectMap::new(&data, HashAlgorithm::SHA256).unwrap();
for (_, sha1, sha256, kind, _) in entries {
let s256 = sha256_oid(sha256);
let s1 = sha1_oid(sha1);
let res = map.map_object(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(res.oid, s1);
assert_eq!(res.kind, *kind);
let res = map.map_oid(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(res, s1);
let res = map.map_object(&s256, HashAlgorithm::SHA256).unwrap();
assert_eq!(res.oid, s256);
assert_eq!(res.kind, *kind);
let res = map.map_oid(&s256, HashAlgorithm::SHA256).unwrap();
assert_eq!(res, s256);
let res = map.map_object(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(res.oid, s256);
assert_eq!(res.kind, *kind);
let res = map.map_oid(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(res, s256);
let res = map.map_object(&s1, HashAlgorithm::SHA1).unwrap();
assert_eq!(res.oid, s1);
assert_eq!(res.kind, *kind);
let res = map.map_oid(&s1, HashAlgorithm::SHA1).unwrap();
assert_eq!(res, s1);
}
for octet in &[0x00u8, 0x6d, 0x6e, 0x8a, 0xff] {
let missing_oid = ObjectID {
hash: [*octet; 32],
algo: HashAlgorithm::SHA256 as u32,
};
assert!(map.map_object(&missing_oid, HashAlgorithm::SHA1).is_none());
assert!(map.map_oid(&missing_oid, HashAlgorithm::SHA1).is_none());
assert_eq!(
map.map_oid(&missing_oid, HashAlgorithm::SHA256).unwrap(),
missing_oid
);
}
}
#[test]
fn binary_searches_slices_correctly() {
let sl = &[
0, 1, 2, 15, 14, 13, 18, 10, 2, 20, 20, 20, 21, 21, 0, 21, 21, 1, 21, 21, 21, 21, 21,
22, 22, 23, 24,
];
let expected: &[(&[u8], Option<usize>)] = &[
(&[0, 1, 2], Some(0)),
(&[15, 14, 13], Some(1)),
(&[18, 10, 2], Some(2)),
(&[20, 20, 20], Some(3)),
(&[21, 21, 0], Some(4)),
(&[21, 21, 1], Some(5)),
(&[21, 21, 21], Some(6)),
(&[21, 21, 22], Some(7)),
(&[22, 23, 24], Some(8)),
(&[2, 15, 14], None),
(&[0, 21, 21], None),
(&[21, 21, 23], None),
(&[22, 22, 23], None),
(&[0xff, 0xff, 0xff], None),
(&[0, 0, 0], None),
];
for (wanted, value) in expected {
assert_eq!(
MmapedLooseObjectMap::binary_search_slice(sl, wanted),
*value
);
}
}
#[test]
fn looks_up_oid_correctly() {
let map = test_map(false);
let entries = test_entries();
let s256 = sha256_oid(entries[0].2);
let s1 = sha1_oid(entries[0].1);
let missing_oid = ObjectID {
hash: [0xffu8; 32],
algo: HashAlgorithm::SHA256 as u32,
};
let res = map.map_object(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(res.oid, s1);
assert_eq!(res.kind, MapType::LooseObject);
let res = map.map_oid(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(*res, s1);
let res = map.map_object(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(res.oid, s256);
assert_eq!(res.kind, MapType::LooseObject);
let res = map.map_oid(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(*res, s256);
assert!(map.map_object(&missing_oid, HashAlgorithm::SHA1).is_none());
assert!(map.map_oid(&missing_oid, HashAlgorithm::SHA1).is_none());
assert_eq!(
*map.map_oid(&missing_oid, HashAlgorithm::SHA256).unwrap(),
missing_oid
);
}
#[test]
fn looks_up_known_oids_correctly() {
let map = test_map(false);
let funcs: &[&dyn Fn(HashAlgorithm) -> &'static ObjectID] = &[
&|h: HashAlgorithm| h.empty_tree(),
&|h: HashAlgorithm| h.empty_blob(),
&|h: HashAlgorithm| h.null_oid(),
];
for f in funcs {
let s256 = f(HashAlgorithm::SHA256);
let s1 = f(HashAlgorithm::SHA1);
let res = map.map_object(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(res.oid, *s1);
assert_eq!(res.kind, MapType::Reserved);
let res = map.map_oid(&s256, HashAlgorithm::SHA1).unwrap();
assert_eq!(*res, *s1);
let res = map.map_object(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(res.oid, *s256);
assert_eq!(res.kind, MapType::Reserved);
let res = map.map_oid(&s1, HashAlgorithm::SHA256).unwrap();
assert_eq!(*res, *s256);
}
}
#[test]
fn nul_padding() {
assert_eq!(LooseObjectMemoryMap::required_nul_padding(1, 1), 3);
assert_eq!(LooseObjectMemoryMap::required_nul_padding(2, 1), 2);
assert_eq!(LooseObjectMemoryMap::required_nul_padding(3, 1), 1);
assert_eq!(LooseObjectMemoryMap::required_nul_padding(2, 2), 0);
assert_eq!(LooseObjectMemoryMap::required_nul_padding(39, 3), 3);
}
}
|